
**^^~^mn^m^wm" mn^^mm^^m wumwpm u.nipjiiip.i im in i. ii i» n^iwinjifi (iij

7-1

00

o
o

w

I \ N^^^ I

ISI/SR-75-4
December 1975

ARPA ORDER NO. 2223

rA

CTION ERRORS IN OPERATING SYSTEMS

Inconsistency of a Single Data Value Over Time

%
i
I

Richard Bisbey II

Gerald Popek

Jim Carlstedt

A

IMORM \ll()\ SCIENCES INSTITUTl

NIVERSITY "i SOI I HI US (ALIFORNIA mi 46 76 Admhall) Way/Marina di I Rt y/i

f2U)82J 1511

■*,-

mmmrm

UNCLASSIFIED
5ECURITv CL A5SI f IT ATION Of THIS PAGE '«Tinn /!•(• Fnltrrd)

lt
L^| iSi/SR-75-4

♦

REPORT DOCUMENTATION PAGE
I mi nrtW-^-f^ \2 GOVT ACCESilON NO

TL('""^ I ll

Protection Errors in Operating Systems:
inconsistency of a Single Data Value Over Time «

T,—«^T„0(V, J_ CONTRACT OR GRANT.NUMBERi«!

7rjL_ /j/'H———r&.
^--fRi c h a rd, fe i sbe y U, Gerald/'opek; JirryCarlstedt / \3/ DAHq35-72-C0308^ ,

READ INSTRUCTIONS
KEFORE COMPLETING FORM

3 RECIPIENT'S CATALOG NUMBER

S^Pfyp* 'jr PPPUW I pewifjp COVERE

-^ Research Repart». /
EPCRT* s. It. ptHffiB,,iNO o»o. «EPCRT/NUMBER

9 PERFORMING ORGANIZATION NAME AND ADDRESS

USC/Information Sciences Institute
4676 Admiralty Way,
Marina del Rey, CA 90291

■1 CONTROLLING OFFICE NAME AND ADDRESS
Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

QLl
14 MONITORING AGENCY NAME » ADDRESS^/ dlllerenl Irom Controlling Olllrtl

10. PHOOHAM ELEMENt, »«OJECT TASK
AREA A WORK ONtT NUMBERS

WsfaA Order C2223
A

i"> BFPBBT emre
Dec«d»r »75

20
15 SECURITY CLASS. Cof (M« r.porfj

Unclassified
Mm. DECL ASSIFICATION DOWNGRADING

SCHEDULE

16 DISTRIBUTION STATEMENT 'ol Ihls Rtporl,

Approved for public release and sale; distribution unlimited,

17 DISTRIBUTION ST ATEMENT'o/^» •*»(r«c(»nffd In Block 30, II lllltrnnl Irom Rtporl)

18 SUPPLEMENTARY NOTES

J

19 KEY WORDS rConllnu» on rtvert» •id* II ntcfmry mid Idanllly by block numbtr)

Critical function, inconsistent paraneter, normalized representation,
operating system security, protection policy, search process

20 ABST RA "T /Conllnn» on tavrmm lid» II ntcmfmry and Idtnllly by block nuaibmr)

(OVER)

DD IJAN1»! 1473 EDITION OF 1 NOV 65 IS OBSOLETE
S'N 0 102-11«- 6601

UNCLASSIFIED

■I y//^£<
SECURITY CLASSIFICATION OF THIS PACE (■»'>>•'' D«'» «"'•'•'" ^

■

^Wl

'■■&*;• 1
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGEflWltn Data Enfrtd,

20. ABSTRACT

*„This report describes a pattern-based approach for finding a general class of
computer operating system errors characterized by the inconsistency of a data value
between pairs of references. A formal description of the error class is given, both as a
protection policy being enforced and as a violation of that policy, i.e., an error statement.
A particular subclass of the general error class is then examined, i.e., those errors in which
the data type is a parameter. A formal specification of a procedure for finding instances
of the subclass is given with examples of errors found using the procedure.

This work has been performed under Advanced Research Projects Agency Contract
DAHC15 72 C 0308. It is part of a larger effort to provide securable operating systems
in DOD environments.

■

UNCLASSIFIED
SECUMITY CLASSIFICATION OF THIS PAGEfWhan Dmlm Cntarad.)

ISI/SR-75-4

December 1975

ARPA ORDER NO. 2223

03*

A*

PROTECTION ERRORS IN OPERATING SYSTEMS

Inconsistency of a Single Data Value Over Time

Richard Bisbey II

Gerald Popek

Jim Carlstedt

INFORMATION SCIENCES INSTITVTE

usivERsny or SOUTHERN CALIFORNIA mr 4676 A, irdty Wky/Marina del Ri ^California 90291
(213) S22 I '■'II

UNDER CONTRACT NO DAHC15 72 C 0308 ARPA ORDER
THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY

NO 2223 PROGRAM CODE NO 3D3OAND3P10

'---—-——LIT: —~^ VIEWS
3FFICIAL OPINION OR POL CY OF THf INIVERSITY

INT APPNOVEO FOR PUBLIC RILEASE AND SALE; DISTRIBUTION IS UNLIMITED.

IPI IF^pupmilJUPNIPI

EDING P ... ,T pnMED

AHSTR/1CT

This report aescribes a pattern-based approach for finding a general class of
computer operating system errors characterized by the inconsistency of a data value
between pairs of references. A formal description of the error class is given, both as a
protection policy being enforced and as a violation of that policy, i.e., an error statement.
A particular subclass of the general error class is then examined, i.e., those errors in which
the data type is a parameter. A formal specification of a procedure for finding instances

of the subclass is given with examples of errors found using the procedure.

This work has been performed under Advanced Research Projects Agency Contract
DAHClb 72 C 0308. It is part of a larger effort to provide securable operating systems

in DOD environments.

^■PPPPff^PW*^ '"** '■vf^fm-mn-m~**mi^mim9M n

INCONSISTENCY OF /I SINGLE D/ITA VALUE OVER TIME

PREFACE

This document is one in a series of related reports, each of which describes a
specific type of security error found in current computer operating systems and presents
techniques for finding errors of that type in a variety of systems (different versions,
manufacturers, etc.). The series is based on a common methodology, i.e., the use of
formalized error patterns to direct the search for errors corresponding to the patterns.
The results are intended for use by persons responsible for the evaluation or
enhancement of the security of existing operating system software. These studies will
make it possible for individuals having no particular expertise in the field of operating
system security to effectively carry out these tasks. Additionally, they can be utilized to
influence the design of future systems or to reevaluate the protection mechanism of a
system after it has undergone a release change. A more general description of the

methodology can be found in [Carlstedt 75].

Like others in this series, this report is organized as foltOWt. After an example
error, the error type is presented in an abstract and formalized Policy/Error Statement, a
representation developed during the analysis of errors and the derivation of error types
carried out by ISl's Protection Analysis Project. The notation used m the formal
description makes it easy to compare and classify error types. The technical terms have
(necessarily) been given very precise meanings during the course of our work; definitions
of these terms accompany the description of the pattern. The concise representation is
accompanied by an informal description of the error type, including notes on its relations

to other types.

Second, some of the primary "instantiations" of this pattern are described. An
instantiation is the replacement of one or more relatively abstract terms in a pattern with
one or more relatively concrete ones, resulting in a new pattern that is an instance of the
former one. Instantiated patterns (may) fall into classes such that significantly different
techniques and algorithms are applicable for finding errors described by the patterns of

those classes. Each such class may be represented by a "subpattern."

The remaining sections of the report present techniques and algorithms useful for

finding errors of a major subpattern.

The security error beircj discussed here is generic in nature and, like many errors,
occurs many times in a number of different operating systems. Therefore, it is stated in
system-independent terms. In order to automate the application of the pattern, both the
pattern and the operating system must be described in common terms. However, the
detailed representations of "target objects" contained in operating system X (Multics, for
example) are likely to be different from those in system Y (OS/360, perhaps), in the two
systems mentioned, X is written in a high-level language, while Y exists as assembly code.
The instruction sequences in each system exhibiting the flaw may appear markedly

1 ll"1 " ■

^

different in details despite the common thread. Thus to apply a pattern to a system, one
of two things must occur: Either the pattern must be rerepresented in target level
operating system terms ("instantiation") or the system must be rerepresented in the
system-independent terms of the pattern ("normalization"), or some combination of both.
In order to process each system with respect to a given error pattern, a different target
instantiation/normalization in principle is necessary. Of course, since the work involves
the same error type, the additional work will be modest. This paper describes one such
target instantiation/normalization as a practical illustration of the underlying re-search.
Other applications of the same pattern are merely engineering extensions of the method.

■

 -'--- :- ' - - - - - - - _ . - _-_ A

-"""i^mm^rn vmKwmy I 1 IWIPI." ^-^-»r--—»

INTRODUCTION: AN EXAMPLE ERROR

Users communicate with operating systems by invoking supervisor subroutines
(Often called SVC's, K'M£\, UUO's, JSYS's, etc.) passing parameters describing both the
operation and the objecUs) on which the operation is to be performed. The supervisor
procedure retrieves values from the parameters and possibly stores new values in the
parameters before returning to the user. If the supervisor procedure fetches a parameter
more than once or stores into a parameter and later fetches that same parameter, the
expectation is that the value fetched is the same as the value previously fetched or
stored. This may not be the case. Consider the following example procedure which
performs the same function as the CNDIR JSYS in TENEX:

).

2.
3.
4.
5.

connect PROCEDURE (directory,password.code);
CALL password__check (directory,password,code);
IF code = "ok' THEN

user_directory = directory;
END;

Connect is a user-callable supervisor procedure allowing users to change their
current file directory to a d.edory other than that which was specified at login. The
procedure requires as parameters the name and password of the new working directory,
and a variable in which a code indicating the result of the request is returned to the caller.
When called, the connect procedure invokes the supervisor procedure "passwcrd_check"
to verify the correctness of the directory/password pair. If the pair is correct, the
working directory is changed and the status code 'ok' is returned to the caller. If the
directory/password pair is incorrect, no directory change is made and an error code is
returned.

The connect procedure assumes that the value of "directory" referenced in line 4 is
the same as that checked in the procedure call in line 2. Similarly, the procedure assumes
that the value of "code" referenced in line 3 is thQ same as that stored by the procedure
"password_check" in line 2. In both cases, if the value is changed, an exploitable security
flaw results. For example, suppos a user wished to connect to directory SMITH, but only
knew the password for directory JONES. One way would be to

1. Call connect with parameters JONES/Jones's password.
2. After the execution of line 2 but before the execution of line 4 in the connect

program, change the "directory" parameter to SMITH.

Another way, not requiring knowledge of any password, would be to

1. Call connect with parameters SMITH/any string.
2. After the execution of line 2 but before the execution of line 3 in the connect

program, change the "code" parameter to 'ok1.

In both cases, the entire password check would be invalidated and the user could
connect to any directory regardless of password.

vi»ii(imiw ' mmmrmm mmmmmmmmmm

Since the above errors are crucially dependent on the ability of the user to modify
a parameter, it is worthwhile to enumerate some of the possible ways this could occur.

1. If the parameter in question is passed by name or reference, the cell containing the
value remains in the caller's address space throughout the execution of the called
code. The value of the cell could be changed by any asynchronous process having
write access to the caller's address space. Such processes include user and system
procedure code and input/output.

2. Again, if the parameter is passed by name or reference, the calling procedure could
arrange that input and output parameters occupy the same physical storage. Thus,
when the called procedure stores into the output parameter, it is also storing into,
and modifying, the value of the input parameter.

1

The above are ey miples of direct changes to the value.
the cell could also be changed.

The name/cell binding of

3. Many machines have a hardware feature whereby the address contained in an
indirect addressing word is ' .cremented each time it is referenced. The caller could
pass a parameter specifying such an indirect word. Each time the called procedure
references the parameter, it references a different cell, which could contain a

different valu»?.

- ■• ■• -■-■ ■*■■ ■ ■ " -

———— «•^P"»w w--™-

T/ZK GENERAL ERROR TYPE

The general error type addressed in this paper concerns the class of errors in
which a data value is rendered inconsistent between two operations. The errors in the
connect procedure above are specific instances of this error type, as are IBM's TOCTTOU
Errors [McPhee 74].

For an operating system to be secure, one must insure that the data which the
system uses to make security and protection-related decisions is correct. By "correct" we
mean that the value of the data must be within a range admissible to the protection
operations, and it must be consistent from one usage to the next. Incorrect data can
result in actions being taken by the system which allow the protection mechanism to be
violated and the system compromised.

The not.on of consistency of value between two operations can be captured
formally by the following Protection Policy statement;

POLICY:
(B,M,X) => for some operation L occurring before M, either

[for operation L which does not modify Value(X),
Value{X) before L = Value{X) before M], or
Value(X) after L = Value(X) before M.

More intuitively stated, process B (which presumably performs some critical function) can
perform operation M on variable X only if the value of X at the time operation M is
performed is equal to the value of X either before or after some operation L which occurs
before M.

As mentioned in the preceding example, there are two possible ways for a value to
be rendered inconsistent. First, the value of the cell may be changed directly by storing a
new value in the cell. This could be done either by the executing process or uy some
other process in the system. The resulting inconsistent (possibly out-of-range) value
invalidates the conditions under which M is allowed to operate, resulting in an error.
Second, the value may be changed by altering the name/cell binding used to access the
cell. When a program accesses a cell, the name used in the access is interpreted by the
addressing mechanism whirli translates the name into the physical location of the cell. If
this binding of the name of the cell and its physical location is changed by substituting a
different cell for the name X, the effect can be equivalent to changing the value of the cell
X. Examples of objects which affect name/cell binding include indirect addresses,

addressing registers, and memory maps.

The Error Statement corresponding to the above Policy Statement is

ERROR:
B:M(X) and for some operation L occurring before M,

[for operation L which does not modify Value'X),
Value (X) before L NOT = Value (X) before Mj, and
Value (X) after L NOT = Value (X) before M.

- - - ■MM

■ '■, l^^BW«^ ' "m' '"' ■WWW^PWINW^

Informally stated, process B performs operation M on variable X and the value of X at the
time operation M is not performed is equal to the value of X either before or after some
operation L which occurs before M.

- ■■ - ■
■■■■■- -.. ■ - . . —

m\mmmmmmmmmmmmmmi mm ™—r- "l^'-T'

INSTANTIATION: INCONSISTENCY OF PARAMETER VALUES

This instantiation investigates the application of the above Policy and Error
Statements to interdomam procedure calls with parameters. The parameter corresponds

to the variable X in the above Policy and Error statements.

STATICIZED PATTERN

To find instances of the above error in code, a pattern is formed using the Error

Statement. The Error Statement requires the existence of two operations, both ot which
refer to a common variable X. The first operation, L, either fetches the value of the
variable or generates a new value. The second operation, M, fetches the value of the
variable. Other information contained in the Error Statement includes the fact that L
occurs before M and that M performs some critical function. These statements give rise

to the following pattern elements;

1. Find an operation L which either fetches or stores into a cell X.

2. Find an operation M which fetches cell X.
3. Operation M is critical.
4. Operation L occurs before operation M.

For this particular error, X is instantiated to a parameter, and thus the following additional

pattern element is derived:

5. Find a procedure B which lb inter-domain callable by user procedures and which

accepts a parameter X.

The above five pattern elements, when intersected, will find all instances of the given

error. The salient features of the elements are:

a) procedure mter-domain callable by user procedures

b) parameter
c) code that fetches or stores the value of a given variable

d) code that fetches a given variable
e) the "before" relation
f) critical function.

The above features constitute an appropriate set of objects for a comparison
language; an operating system could be mapped into these objects (i.e., normalized) and a
simple comparison algorithm could be written to find sequences of the desired objects.
Not all of the features, however, are directly represented in static procedure code. The
"before" relation of pattern element 4 is not a discrete object in procedure code. It is
calculated by mterpretmo flow of control operators in the static code. In principle, the
normalization process could calculate the relation for a symbol and all other symbols in the
code and output all instances of the relation as discrete objects. In order to simplify the
normalization process, the above calculation will not be made; instead, flow of control
operators will be included in the normalized representation. An interpretive routine will

mmmmmmww nui ..in n

then be used during comparison to calculate the relation for particular cases. Another
method of simplifying both the normalization and search process is to relax the pattern by
dropping pattern elements 3, the "cnticality" condition. As a result of this relaxation, ,
detected instances of the pattern must be examined manually to determine whether they

are in fact protection errors.

The normalization procedure is now the following:

1. Filter out everything except procedures which are inter-domain callable by users.

2. Of these, identify those with parameters.
3. For each parameter, identify and output all instructions or statement which involve

store or fetch operatio -.o 6li the parameter.
4. Identify and output all instructions or statements which contain flow of control

operators.

The search process is to recognize, for each parameter, executab'e sequences of
store or fetch operations followed by a fetch operation. The matches are thereafter
examined manually to determine if the second operation was in fact critical.

NORMALIZATION AND SEARCH NOTES

The following is a list of special considerations for normalizing and searching the

resulting normalized representation.

1. Care must be exercised in collecting flow of control operators from the original
program text and in interpreting them in the search process so that multiple

execution of a single reference such as in a repetitive loop is detected. As an

example, consider the foltowmg;

XtPHOCEDURE d);

DO WHILE (,..);

END;

END;

Even though the parameter "i" appears only once in the static code, the reference
may be executed multiple timei, constituting a possible error.

2. It may not always be possible to determine the usage of a variable from loc?l
context, e.g., parameters used as arguments in function or procedure calls. In theee
cases, the worst-case assumption of both fetch and store should be used.

3. Care must be exercised in identifying statements which involve parameters. The
normalization process must detect not only direct usage of the parameter, but also
indirect usage by overlay or redefinition of physical storage or names, and by

pointer variables and pointer addressing.

*.-

mmmmm mm

4. Special attention should be given to parameters in which pointers or addresses are
passed. In such cases, even though the parameter may be passed by value, the
effect of passing the address is usually equivalent to a reference parameter.

EXAMPLE APPLICATION

The inconsistent parameter instantiation of the above error type was applied to 47
procedures from the Multics operating system. The procedures were selected from the
the user-callable gate "hcs_". A program was written to automate a large portion of the
normalization task. Specifically, the program processed each procedure, identifying and
outputtmg by parameter a list of statements in which parameter usage occurred. The
access type for each usage was then identified as either "fetch," "store," or "fetch/store."
This list was then searched manually for sequences of either fetch, store, or fetch/store
followed by fetch. All matching pairs were then examined to determine if the second
fetch was critical.

Of the 47 procedures examined, seven were observed to have one or more errors;
five other procedures had matches for which "criticality" of the second feU h could not be
determined due to lack of system documentation*

The errors found are trghlighted by the following three examples (where the
original parameter :s denoted by italics). In example 1, the program obtains the address
of the parameter and stores it in a local variable. The procedure next copies the
parameter value to a local variable and tests the value or range. When the prc-edure
later uses the parameter in a calculation, it references the original value using the stored
pointer. This not only invalidates the range checking ode, but also hides the final
erroneous fetch because of the pointer usage. In examp e 2, the program fetches the
parameter man> times. Different values at each fetch cause the procedure to perform
erroneously. In example 3, the program checks the value of the parameter before using it
in a critical procedure call. The value checked, however, may be different than that used
in the procedure call.

* It is important that the reader draw no conclusion from this statement regarding the
security of MULTICS relative to other systems other than the fact that this error pattern
has been applied to MULTICS and the o^erved errors repaired.

■■ ■■■ ■■ .MMa-tteHtMatai

W^^^WIIII i ■ mmmmmmmmm^mmmmimm

10

1 /» M**
2 « *
3 « *
4 » Copyright (c) 1972 by Massachusetts Institute of *
5 * Technology a^.d 'oneywell Information Systems, Inc. *
f * «
7 * »

8 «»««*«**.»***»«*»»*»♦♦****«***«»»*****»******»******»** */

i

j

I

33
34

35
36
37

54 ipc.
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

del 1 chn<r.rl name aligned based(chn_ptr), /» structure of channel name »/
2 rel_ptr bit(18) unaligned, /* points to channel */
2 r.ng bit(3) unaligned, ,•* ring of channel */
2 pad bit(15) unaligned,
2 vhanneMndex fixed bin(35); /* index of special channel ♦/

sf block: entry(c/!amifl/,code);

esw =» 3; /* indicate entry */
val_ring = levelSgeU); /* get validation level »/
chn ptr « addr{channel); /* get pointer to channel name */
ev ring = fixed(cAanit<'/ nomp.ring^); /* get channel ring */
cindex = channel «amc.channel_index; /» copy index */
if ev_ring = val_ring then do; /* rings don't match */

code ■ error_table_Swrong_channel_ring;
return;
end;

if channel «omf'.rel_ptr then do; /» not a special channel «/

code - error_table_8invalid_channelj
return;
end;

if cindex < 1 | cindex > tc_dataSmax_channels then do;
/« cannot be special channel »/

code ■ error_table_8invalid_channel;
return;
end;

111 if return_sw - 1 then code ■
error__table_8ips_has_occurred; /* remember that ips ♦/
112 else code - 0;
113 if substr(pdsSevents_pending

pds8event_masKs(val_ring),cindex,l) then do; /« we have wakeup ♦/
114

substr(pds8events_pending,c/ianri«>/ namc.channel_index,l) - "0"bj
115 return_sw - 1; /* we can return */
116 code - 0;
117 end;

Example 1

n^m

■r i^^MI "«"H " "'■■ '

11

1 /« »♦*«**»***»*»**»**»**«*»**********************♦*******

2 » *
3 * *
4 « Copyright (c) 1972 by Massachusetts Institute of *
5 * Technology and Honeywell Information Systems, Inc. *

6 * *
7 ♦ »
8 tt***tt***********t*************************-********** *l

11 tty_write: proc (twx, readp, offset, nelem, nelemt, ütate, ercode); /« tty output

conversion */

22 del ercode fixed bin (35), (.elem, nelemt, o//sri, sta e, twx, col, tidx, tmpl, tmp2, i, ini,

inmax) fixed bin (18),

ini = offset;
mmax ■ im+nelem;

/* m char index */
/* input index limit ♦/

/» if done */

/* we are done except for

180
181
182
183 if gterm then if graphic then go to gmode; /* if m graphic mode go there

immediately */
184
185 if dev_info.hs_dev then go to hs_writei /* if high speed channel do

it there */
186
187 loop: if mi >• inmax
188 then do;
189 donesw = "l"b;
updating ^arrage */
190 go to asblack;

191 end;
192
193 if iaend_frame
194 then go to full;

195
196 if m-offset > 4095 then do;
to prevent */
197
processor »/
198 ercode - 3000005;
with write yet */
199 donesw - "l"b;
200 go to asblack;

201 end;
202

/* if frame full »/

/* write max of 4095 on one call

/* a user from hogging hardcore and

/» let user know we are not done

/« done for now */
/* start writing what we've got */

Example 2

- - .■«MM^BMMMta* ■ ■

"""■ ' '-■—-- mm**vm .mmmmm ^m^mmf! 11 UP HMJ w^^^m

l

12

2 * *
j « *

4 * Copyright (c) 1972 by Massachusetts Institute of *
5 « Technology and Honeywell Information Systems, Inc. *
6 * *
7 * *
g ♦«M«**»»M*****»:M»********»*»***»**»»*»***»*»****** */
9
10 stop_process; proc(/)rorrsx id);
11
12 /* Procedure used by a process to put itself into "stopped" state.
!3 Called by process-overseer on new_proc and logout.
14
15 Converted to PL/I, C Garman, 3 Feb 1971.
16
17 */
18
19 del procpss _id bil'36) aligned;
20
21 del pdsSprocess.Jd bit(35) aligned ext,
22 istate fixed bin;
23
24 del pxssSstop entry{bit(36) aligned, fixed bin);
25
26 if pdsSprocess_id -•= proms id
27 then go to return;

28
29 /* If super-stop ever wanted, from hphcs_1 delete this line.

30
31 stop_process_irmi: entry(pror«'.<s id); /* "possible hphcs_
entry" ♦/

32
33 call pxssSstop(/)rorc«s id, istate);
34
35 return:
36 end stop_process;

/* See if proper process */

Example 3

 ■ '■■:- -• - 111 ■■ III 11 1 Mill. ■ !■

-.—~—w—— mmmmmm-^mmm^^mmm^t^l^n mm »ml. I " ■ m i ■ nn ■I«I • » nvppBWFv^^^pnnniniiiPinpvppp

13

REFKHKNCES

[Carlstedf 75] Carlstedt, J., Bisbey, R., Popek, G., Pattern Directed Protection Evaluation,
USC Information Sciences Institute, ISI/RR-75-31, June 1975.

[McPhee 74] McPhee, W. S., Operating System Integrity in 0S/VS2, IBM Systems
Journal, Vol. 13, No. 3, 1974, pp. 230-25?

' d '- ■,l II ■[IMfa'l ' '--■ _.. MMMHiMMÜM ■ - - ■ ■ ■-■-•■

